
Résolution exacte de problèmes NP-difficiles
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1 Parameterized algorithm
Parameterized problems: Consider a parameterized problem P . We understand P as a collection
of all yes-instances of the problem. For example, if P denotes the problem VERTEX COVER , then
we shall also see VERTEX COVER as the set of instances

{(G, k) : G is a graph having a vertex cover of size at most k}.

So, whenever an instance (x, k) of a parameterized problem P is a yes-instance, we equivalently
write as (x, k) ∈ P .

Parameterized algorithm: A parameterized problem P is said to be fixed-parameter tractable
if there is an algorithm which decides the membership of any input instance (x, k) to P in time
f(k) · |x|c for some constant c and a function f , Such an algorithm is called a parameterized
algorithm or an fpt-algorithm.

2 O∗(2k)-time algorithm for VERTEX COVER

The procedure VC in Algorithm 1 takes as an input instance a graph G and a non-negative integer
k, and outputs YES or NO correctly.

Algorithm 1 Algorithm for VERTEX COVER

1: procedure VC(G, k)
2: if G has no edge then return YES.
3: else if k = 0 then return NO.
4: else . G has an edge and k > 0
5: Pick an edge uv.
6: return VC(G− u, k − 1) or VC(G− v, k − 1).
7: end if
8: end procedure

Below, we prove the correctness and the running time of the algorithm VC1.
1A detailed proof is given for this algorithm to illustrate what a correctness proof in full should be like. For other

algorithms that we’ll encounter later, not so much details might be delineated.
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Lemma 1. Given an input instance (G, k) of VERTEX COVER , the procedure VC correctly de-
cides whether an input instance (G, k) is YES or NO in time O(2k · poly(n)).
Proof: First, let us show the correctness of VC; that is, VC(G,k) returns YES if and only if (G, k)
is a YES-instance. We prove this by induction on k. Notice that when k = 0, the procedure
VC always returns some output (and do not branch). Therefore, in any recursive call during the
execution of the procedure, the parameter k remains non-negative. If k = 0 or |E| = ∅, then it is
trivial to verify that Lines 5 and 3 respectively returns a correct output. Therefore, we consider the
case when |E| > 0 and k > 0.

If (G, k) is a YES-instance, that is G has a vertex cover X of size at most k, then at least one
of u and v in Line 5 is included in X . Observe that at least one of the instances (G − u, k − 1)
and (G − v, k − 1) is a YES-instance because X \ u (respectively X \ v) is a vertex cover of
G − u (respectively G − v). By induction hypothesis, VC returns a correct output upon each of
(G−u, k− 1) and (G− v, k− 1). This means that, by the fact that one of them is a YES-instance,
the returned output 2 at Line 6 will be YES and thus the output of VC(G, k) is correct.

Now suppose that (G, k) is a NO-instance. Then the instance (G − u, k − 1) (likewise (G −
v, k − 1)) is a NO-instance. Indeed, if G − u has a vertex cover X ′ of size at most k − 1 then
X ′ ∪ {u} is also a vertex cover of G and we have |X ′ ∪ {u}| ≤ k, a contradiction. Therefore, by
induction hypothesis VC outputs NO to both instances called in Line 6. Therefore, Line 6 returns
NO. This proves the correctness of the algorithm.

To see the running time, observe that the search tree depicting the relations of the recursive
calls has depth at most k. This is because each instance created during the recursive calls have
k ≥ 0 and every branching decreases the parameter value by 1. Therefore, there are at most 2k

leaves and O(2k) nodes in the search tree. As the algorithms spends poly(n) steps at each node,
the running time follows.

3 O∗((3k)k)-time algorithm for FEEDBACK VERTEX SET

Lemma 2. For any feedback vertex set X of G = (V,E), it holds that∑
v∈X

(d(v)− 1) ≥ |E| − |V |+ 1.

Proof: All the edges of G are either counted as part of the forest G − X , or incident with X .
Therefore, ∑

v∈X

deg(v) + |V | − |X| − 1 ≥ |E|,

which yields the claimed inequality.

Lemma 3. Let G = (V,E) be a graph of degree at least three. Let {v1, v2, . . . , vn} be the vertex
set of G such that

deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn).

Then for any feedback vertex set X , we have X ∩ {vi : i ≤ 3k} 6= ∅.
2Here, we construe ‘or’ as the boolean operation OR by equating YES to True and NO to False.
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Proof: Suppose not. Observe∑
i≤3k

(deg(vi)− 1) ≥ 3
∑
v∈X

(deg(v)− 1) ≥ 3
(
|E| − |V |+ 1

)
,

because each vertex of X has degree at most deg(v3k). Also, due to X ⊆ {v3k+1, . . . , n}∑
i>3k

(deg(vi)− 1) ≥
∑
v∈X

(deg(v)− 1) ≥ |E| − |V |+ 1.

Summing the two equalities, we get

n∑
i=1

(deg(vi)− 1) = 2|E| − |V | ≥ 4
(
|E| − |V |+ 1

)
,

and thus
3|V | > 2|E| =

∑
v∈V

deg(v).

This contradicts the assumption that each v has degree at least three.

4 O∗(4k−lp∗(G))-time algorithm for VERTEX COVER

Here, we consider the problem VERTEX COVER PARAMETERIZED ABOVE LP. An input instance
and the question is the same as in VERTEX COVER , but the parameter under consideration is
k − lp∗(G). Here k is the budget for vertex cover in the input, and lp∗(G) is the value of an
optimal fractional solution to the following linear program LPVC for VERTEX COVER .

[LPVC] min
∑

u∈V (G)

xu

xu + xv ≥ 1 ∀(u, v) ∈ E(G)
xu ≥ 0 ∀u ∈ V (G)

Observe that if an optimal solution to the above LP is integral, then it corresponds to an optimal
vertex cover. In general, an optimal solution x∗ to LPVC is not necessarily integral.

The basis of this parameterization is the following fact:

the size of an optimal vertex cover of G ≥ lp∗(G).

Therefore, the parameter k − lp∗(G) can be assumed to be non-negative; otherwise, it holds that
k < lp∗(G), which means that any vertex cover of G has size strictly larger than k. Especially G
does not have a vertex cover of size at most k. We can correctly declare (G, k) as a NO-instance
in this case.

Lemma 4. If k < lp∗(G), then the input instance (G, k) is a NO-instance.
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Half-integrality of LP for VERTEX COVER

Now we establish the half-integrality of LPVC, that is, the property that there is always an optimal
fractional solution x∗ to LPVC such that x∗v =

1
2

for every v ∈ V .
Let x∗ be an optimal fractional solution fo LPVC, which is not necessarily half-integral. We

partition3 V (G) according to their values in x∗.

• H0 := {u ∈ V (G) : x∗u > 0, 5}
• C0 := {u ∈ V (G) : x∗u < 0, 5}
• R0 := {u ∈ V (G) : x∗u = 0.5}

It is known that LP can be solved in polynomial time, hence the partition (R0, H0, C0) can be
found in polynomial time. We shall see that x∗ can be converted into a half-integral solution, i.e.
xu ∈ {0, 0.5, 1} while maintaining the optimality, and thus showing that there exists a half-integral
optimal solution to LP formulation of VERTEX COVER .

Lemma 5. For every subset H ′0 ⊆ H0, we have |H ′0| ≤ |N(H ′0) ∩ C0|.

Proof: Take ε = min{x∗u − 0.5 : u ∈ H ′0} and note that ε > 0. Consider a solution x′ defined as:

x′u =


x∗u − ε if u ∈ H ′0
x∗u + ε if u ∈ N(H ′0) ∩ C0

x∗u otherwise

It is easy to verify that x′ is a feasible LP solution. The objective value of x′ equals∑
u∈V (G)

x∗u + ε(−|H ′0|+ |N(H ′0) ∩ C0)|).

From the optimality of x∗, our claim follows.

Lemma 6. The following solution x̃ is optimal to LPVC:

x̃u =


0.5 if u ∈ R0

1 if u ∈ H0

0 if u ∈ C0

Proof: Let H ′0 be the set of vertices in H0 with x∗u < 1 and C ′0 be the set of vertices in C0 with
x∗u > 0. Among all optimal solutions to LP yielding the partition (R0, H0, C0), choose x∗ so as to
minimize the set H ′0 ∪C ′0. We shall show that H ′0 ∪C ′0 = ∅, which establishes x∗ = x̃ and thus the
statement.

3H,C and R represent ‘Head’, ‘Crown’ and ‘Rest’.
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For the sake of contradiction, H ′0 ∪ C ′0 6= ∅. Take δ = min{1− x∗u : u ∈ H ′0} ∪ {x∗u : u ∈ C ′0}
and note that δ > 0. Consider a solution x′ defined as:

x′u =


x∗u + δ if u ∈ H ′0
x∗u − δ if u ∈ C ′0
x∗u otherwise.

As we chose minimum δ, it holds x′ ≥ 0. It is straightforward to verify that x′ is feasible.
Now we argue that x′ is an optimal LP solution. From Lemma 5, we know |H ′0| ≤ |N(H ′0) ∩

C0|. Also observe that N(H ′0) ∩ C0 ⊆ C ′0 since otherwise, there would be an edge (u, v) with
u ∈ H ′0 and v ∈ C0 \ C ′0 such that x∗u + x∗v < 1 + 0 = 1, contradicting the feasibility of x∗. We
derive |H ′0| ≤ |C ′0|. Then, the objective value of x′ equals∑

u∈V (G)

x∗u + δ(|H ′0| − |C ′0|),

which does not exceed
∑

u∈V (G) x
∗
u. Therefore, x′ is an optimal solution such that {u ∈ H0 : x

′
u <

1} ∪ {u ∈ C0 : x
′
u > 0} ( H ′0 ∩ C ′0, a contradiction. This complete the proof.

We remark that the proof of Lemma 6 is constructive: one can use the procedure in the proof
to transform an arbitrary optimal solution to a half-integral solution. Fom now on we assume that
x∗ is a half-integral solution as in Lemma 6.

Preprocessing: how to get all-12 optimal solution
From the previous discussion, we know that a half-integral optimal solution x∗ for VERTEX COVER

can be obtained in polynomial time. We define the set Va(x∗) as the set of all vertices v such that
x∗v = a for a ∈ {0, .5, 1}. When x∗ is obvious from the context, we drop it. From the half-
integrality of x∗, it is obvious that (V0, V1, V 1

2
) forms a partition of V .

Lemma 7. For the graph G[V 1
2
], all-1

2
is an optimal fractional solution.

Proof: If all-1
2

is not an optimal fractional solution to LPVC of G[V 1
2
], consider an optimal frac-

tional solution z∗ of G[V 1
2
] and observe ∑

v∈V 1
2

z∗v <
∑
v∈V 1

2

x∗v.

We can obtain a new feasible solution to LPVC of G by replacing the value of x∗v by z∗v for all
v ∈ V 1

2
(and keep other values unchanged). It is not difficult to verify that the new fractional

solution is feasible and has strictly smaller objective value than x∗, contradicting the optimality of
x∗.

Lemma 8. The instance I ′ = (G′, k′) is equivalent to I = (G, k), where G′ = G[V 1
2
] and k′ =

k − |V1|. Furthermore, it holds that k′ − lp∗(G[V 1
2
]) = k − lp∗(G).
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Proof: The proof of the first statement is proved in the next lecture note. The second statement is
derived from the following.

lp∗(G) =
∑
v∈V

x∗v =
∑
v∈V0

x∗v +
∑
v∈V1

x∗v +
∑
v∈V 1

2

x∗v

=
1

2
· |V 1

2
|+ |V1|

= lp∗(G[V 1
2
]) + |V1|,

where the last equality holds because of Lemma 7.

Notice that Lemma 7 guarantees that all-1
2

is an optimal fractional solution to G[V 1
2
], but it

does not guaranteed that it’s the unique optimal solution. So how can we achieve the uniqueness?
We do it greedily, namely, try each vertex v and fix its LP value to one and see if it leads to yet
another optimal fractional solution. To be precise, here is the reduction rule. We write |y∗| to
denote

∑
v∈V y

∗
v .

Reduction Rule 1. If there is a vertex v ∈ V and a half-integral solution y∗ to LPVC such that
y∗v = 1 and |y∗| = lp∗(G), then define the new instance I ′ = (G′, k′) with G′ = G[V 1

2
(y∗)] and

k′ = k − |V1(y∗)|.

The soundness of Reduction Rule 1 is derived immediately from Lemma 8. It is clear that after
applying Reduction Rule 1 exhaustively, all-1

2
is the unique optimal fractional solution to LPVC

of the resulting graph. We just state this observation as the next statement.

Observation 1. If (G, k) is irreducible with respect to Reduction Rule 1, then x∗v =
1
2

for all v ∈ V
is the unique fractional optimal solution to LPVC.

Branching + Preprocessing with runtime analysis

Algorithm 2 Algorithm for VERTEX COVER ABOVE LP
1: procedure VC-above-LP(G, k)
2: Apply Reduction Rule 1 until it can no longer be applied.
3: . Now, (G, k) has all-1

2
as the unique fractional optimal sol.

4: if k < lp∗(G) then return NO. . Lemma 4
5: else if k ≥ 2 · lp∗(G) then return YES. . Lemma 9
6: else . G has an edge and k − lp∗(G) ≥ 0
7: Pick an edge uv.
8: return VC-above-LP(G− u, k − 1) or VC-above-LP(G− v, k − 1).
9: end if

10: end procedure
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The algorithm for the problem VERTEX COVER ABOVE LP is presented as VC-above-LP.
The correctness of Line 4 is due to Lemma 4. To see the correctness of Line 5, we need the next
lemma 4.

Lemma 9. For any graph G, one can find a vertex cover Z of size at most 2 ·lp∗(G) in polynomial
time. In particular, an instance (G, k) to VERTEX COVER is a YES-instance if k ≥ 2 · lp∗(G).

Proof: First compute an optimal half-integral solution x∗ to LPVC of G and consider the usual
partition (V0, V1, V 1

2
). We take Z = V1 ∪ V 1

2
. Since V0 is an independent set, Z is a vertex cover.

Now
|Z| = |V1|+ |V 1

2
| ≤ 2(|V1|+ 0.5 · |V 1

2
|) = 2 · lp∗(G).

The second statement follows immediately.
The rest of the correctness proof is rather tedious. To analyze the running time of VC-above-

LP, consider the measure
µ(G, k) = k − lp∗(G).

We want to argue that the measure decreases by at least 1
2

in each branching of Line 8. The key
observation is the following inequality (in fact, equality holds)

lp∗(G− v) ≥ lp∗(G)− 1

2
.

Suppose this is not the case, that is, lp∗(G− v) ≤ lp∗(G)− 1 and let y∗ be an optimal fractional
solution of G − v, i.e. |y∗| = lp∗(G − v). We can extend y∗ to a fractional solution z∗ of G by
setting the value at v equal to 1. Then

|z∗| = |y∗|+ 1 = lp∗(G− v) + 1 ≤ lp∗(G),

which means that z∗ is an optimal fractional solution of G which is not all-1
2
. This contradicts that

Reduction Rule 1 has been applied exhaustively in Line 2. Now

µ(G− v, k − 1) = (k − 1)− lp∗(G− v) ≤ k − 1− (lp∗(G)− 1

2
) = µ(G, k)− 1

2
.

By symmetry, the branching at the endpoint u also decreases the measure by 1
2
.

During the branching algorithm, the measure µ can drop down to −0.5 at most (in which case,
we declare as NO-instance). Therefore, the length of a longest root-to-leaf path in the search tree
is 2µ(G, k) = 2(k − lp∗(G)). It follows that the number of leaves in the search tree is at most
4k−lp

∗(G), and the running time is O∗(4k−lp∗(G)).
Because of Line 5 (see Lemma 9 as well), we may assume that k < 2 ·lp∗(G) since otherwise,

we can immediately declare the given instance as YES, in constant time. Therefore, k− lp∗(G) ≤
k
2
. We summarize the result in the next statement.

4From lp∗(G) ≤ the size of an optimal vertex cover, we deduce that the size of Z is at most twice the size of an
optimal vertex cover. That is, Lemma 9 presents a 2-approximation algorithm for VERTEX COVER
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Lemma 10. The algorithm VC-above-LP solves, given an instance (G, k), the problem VERTEX

COVER ABOVE LP in time O∗(4k−lp∗(G)) as well as O∗(2k)-time 5.

Problems List

VERTEX COVER

Instance: a graph G = (V,E), a positive integer k.

Question: Does G have a vertex cover of size at most k, i.e. a set X of vertices such that
G−X is an independent set?

ODD CYCLE TRANSVERSAL

Instance: a graph G = (V,E), a positive integer k.

Question: Does G have a vertex cover of size at most k, i.e. a set X of vertices such that
G−X is bipartite?

FEEDBACK VERTEX SET

Instance: a graph G = (V,E), a positive integer k.

Question: Does G have a feedback vertex set (fvs) of size at most k, i.e. a set X of vertices
such that G−X is acyclic?

d-HITTING SET

Instance: a universe V , a family E of subsets of V each of which having size at most d, a
positive integer k.

Question: Is there a hitting set of E , i.e. a subset X of V such that X ∩ e 6= ∅ for every
e ∈ E?

5Recall that we already have a simple branching algorithm for VERTEX COVER running in time O∗(2k). There-
fore, the second running time might seem unnecessary. However, almost identical algorithm work for problems such as
Multiway Cut and others, which are generalizations of VERTEX COVER . For those problems, this LP-based branching
approach is the only known way to achieve O∗(2k)-time algorithm.
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k-PATH

Instance: a graph G = (V,E), a positive integer k.

Question: Does G have a path on k vertices?
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